일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 리눅스
- 프로그래밍
- CV
- 턱걸이
- 텐서플로우
- 딥러닝
- linux
- 알고리즘
- Windows 10
- shell
- 쉘
- 프로세스
- 학습
- 영상처리
- C언어
- C++
- 백준알고리즘
- python
- Windows10
- 백준
- OpenCV
- 시스템프로그래밍
- error
- Computer Vision
- c
- 운영체제
- 공부
- 회귀
- TensorFlow
- 코딩
- Today
- Total
목록네트워크 (4)
줘이리의 인생적기

더 높은 정확도를 나오게 하려면 어떻게 해야할까요? 딥러닝의 발전은 컨볼루션 레이어가 중첩된 더 깊은 구조에서 나타났습니다. 정확도가 개선되었다는 말이죠 이번에는 VGG의 스타일로 모델을 생성해보도록 하겠습니다. import tensorflow as tf import matplotlib.pyplot as plt fashion_mnist = tf.keras.datasets.fashion_mnist (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data() train_X = train_X / 255.0 test_X = test_X / 255.0 # print("reshape 이전 => ", train_X.shape, test_X.shape) train..

정확도를 좀 더 올리기 위해, 과적합을 막기 위해 MaxPooling 레이어와 Dropout레이어를 추가해보도록 하겠습니다. 레이어 추가 부분을 주의하여 봐주세요. import tensorflow as tf import matplotlib.pyplot as plt fashion_mnist = tf.keras.datasets.fashion_mnist (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data() train_X = train_X / 255.0 test_X = test_X / 255.0 # print("reshape 이전 => ", train_X.shape, test_X.shape) train_X = train_X.reshape(-1, 28..

앞서 공부했던 이항 분류는 범주의 수가 2개 였었죠 이번에는 다항분류를 공부해볼텐데, 다항 분류는 범주의 수가 3개 이상인 경우입니다. wine 데이터셋에서 quality를 가지고 다항분류를 해보겠습니다. import pandas as pd #white wine, red wine 데이터 받아오기 red = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';') white = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv..

딥러닝에서 유명한 예제죠. 보스턴 주택 가격 예측 네트워크를 만들어보겠습니다. 보스턴 주택 가격 데이터셋은 keras와 tf.keras에 기본적으로 내장되어 있습니다. 먼저 훈련 데이터, 검증 데이터, 테스트 데이터에 대해 알아봅시다. 훈련(train) 데이터는 학습 과정에서 사용되는 데이터입니다. 검증(validation) 데이터는 학습이 잘 되고 있는지 검증하는 용도로 사용되는 데이터입니다. 테스트(test) 데이터는 학습 결과를 평가하기 위한 데이터입니다. 다음은 보스턴 주택 가격 데이터셋에 대하여 알아보겠습니다. 1978년 미국 보스턴 지역의 주택 가격이며, 506개 지역의 주택 가격 중앙값을 1,000달러 단위로 나타냈습니다. 범죄율, 주택당 방의 수, 고속도로 접근성, 학생/교사 비율 등 13..