일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 학습
- Windows 10
- c
- 알고리즘
- 프로세스
- error
- 코딩
- C++
- 영상처리
- TensorFlow
- 딥러닝
- 백준알고리즘
- shell
- Windows10
- python
- C언어
- 텐서플로우
- 백준
- 프로그래밍
- 리눅스
- CV
- 시스템프로그래밍
- linux
- 쉘
- 운영체제
- 공부
- 턱걸이
- Computer Vision
- 회귀
- OpenCV
- Today
- Total
목록학습 (11)
줘이리의 인생적기
더 높은 정확도를 나오게 하려면 어떻게 해야할까요? 딥러닝의 발전은 컨볼루션 레이어가 중첩된 더 깊은 구조에서 나타났습니다. 정확도가 개선되었다는 말이죠 이번에는 VGG의 스타일로 모델을 생성해보도록 하겠습니다. import tensorflow as tf import matplotlib.pyplot as plt fashion_mnist = tf.keras.datasets.fashion_mnist (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data() train_X = train_X / 255.0 test_X = test_X / 255.0 # print("reshape 이전 => ", train_X.shape, test_X.shape) train..
정확도를 좀 더 올리기 위해, 과적합을 막기 위해 MaxPooling 레이어와 Dropout레이어를 추가해보도록 하겠습니다. 레이어 추가 부분을 주의하여 봐주세요. import tensorflow as tf import matplotlib.pyplot as plt fashion_mnist = tf.keras.datasets.fashion_mnist (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data() train_X = train_X / 255.0 test_X = test_X / 255.0 # print("reshape 이전 => ", train_X.shape, test_X.shape) train_X = train_X.reshape(-1, 28..
[tensorflow 19]에서 Fashion MNIST를 Dense 레이어를 사용하여 분류하였습니다. 이번에는 새롭게 공부한 컨폴루션, 풀링 레이어를 이용하여 분류해보겠습니다. [tensorflow 19]와 동일하게 정규화를 진행하고, 컨볼루션 연산을 진행하겠습니다. Conv2D 연산을 하기 위해서는 채널을 가진 데이터의 형태로 Shape를 변경해야 합니다. Shape 변경 후 모델 구성을 해보도록 하겠습니다. import tensorflow as tf fashion_mnist = tf.keras.datasets.fashion_mnist (train_X, train_Y), (test_X, test_Y) = fashion_mnist.load_data() train_X = train_X / 255.0 te..
이제 또 다른 다항분류 Fashion MNIST를 공부해보겠습니다. MNIST란 손으로 쓴 숫자들로 이루어진 대형 데이터베이스이며, 머신러닝의 고전적인 문제입니다 이 영향을 받아 만들어진 Fashion MNIST는 옷, 신발, 가방의 이미지 데이터베이스입니다. Fashion MNIST의 특징은 그레이스케일 이미지이며, 10개의 범주, 28 * 28 크기의 픽셀을 가지고 있다는 점입니다. Fashion MNIST 데이터셋은 tf.keras에 탑재되어 있으니 바로 시작해보겠습니다. 데이터를 먼저 불러오고, 정규화를 한 다음 첫 번째 데이터를 먼저 확인해보겠습니다. import tensorflow as tf fashion_mnist = tf.keras.datasets.fashion_mnist (train_X,..
앞서 공부했던 이항 분류는 범주의 수가 2개 였었죠 이번에는 다항분류를 공부해볼텐데, 다항 분류는 범주의 수가 3개 이상인 경우입니다. wine 데이터셋에서 quality를 가지고 다항분류를 해보겠습니다. import pandas as pd #white wine, red wine 데이터 받아오기 red = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv', sep=';') white = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv..
앞선 포스팅에서 사용했었던 Sequantial 모델을 사용하도록 하겠습니다. 4개의 Dense 레이어, relu, Adam, mse를 사용하겠습니다. from tensorflow.keras.datasets import boston_housing import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #데이터셋 가져오기 (train_X, train_Y), (test_X, test_Y) = boston_housing.load_data() ###########정규화 (Standardization) ############# # X 값 Standardization X_mean = train_X.mean(axis=0) X_std = tr..
딥러닝에서 유명한 예제죠. 보스턴 주택 가격 예측 네트워크를 만들어보겠습니다. 보스턴 주택 가격 데이터셋은 keras와 tf.keras에 기본적으로 내장되어 있습니다. 먼저 훈련 데이터, 검증 데이터, 테스트 데이터에 대해 알아봅시다. 훈련(train) 데이터는 학습 과정에서 사용되는 데이터입니다. 검증(validation) 데이터는 학습이 잘 되고 있는지 검증하는 용도로 사용되는 데이터입니다. 테스트(test) 데이터는 학습 결과를 평가하기 위한 데이터입니다. 다음은 보스턴 주택 가격 데이터셋에 대하여 알아보겠습니다. 1978년 미국 보스턴 지역의 주택 가격이며, 506개 지역의 주택 가격 중앙값을 1,000달러 단위로 나타냈습니다. 범죄율, 주택당 방의 수, 고속도로 접근성, 학생/교사 비율 등 13..
앞서 배웠던 것들로 학령인구와, 노령인구의 경향을 나타내주는 딥러닝 네트워크 회귀선을 만들어 보겠습니다. import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #X = school_age_population, Y = elderly_population X = [16.4, 14.7, 17.2, 16.6, 17.1, 20.3, 17.2, 15.6, 17.4, 18.7, 16.9, 17.1, 15.8, 19.3, 16.6, 15.1, 17.9] Y = [11.4, 13.2, 11.1, 17.6, 16.3, 9.2, 15.2, 18.4, 18.5, 11.6, 13.7, 9.7, 21.5, 12.0, 14.5, 15.8, 14.0] m..