일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- TensorFlow
- 운영체제
- Windows 10
- 리눅스
- shell
- CV
- C언어
- python
- 시스템프로그래밍
- c
- 쉘
- 알고리즘
- 백준
- 학습
- C++
- 백준알고리즘
- Computer Vision
- linux
- 프로세스
- 코딩
- 텐서플로우
- 턱걸이
- 회귀
- 딥러닝
- 영상처리
- error
- Windows10
- 프로그래밍
- OpenCV
- 공부
- Today
- Total
목록epoch (2)
줘이리의 인생적기

앞선 포스팅에서 사용했었던 Sequantial 모델을 사용하도록 하겠습니다. 4개의 Dense 레이어, relu, Adam, mse를 사용하겠습니다. from tensorflow.keras.datasets import boston_housing import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #데이터셋 가져오기 (train_X, train_Y), (test_X, test_Y) = boston_housing.load_data() ###########정규화 (Standardization) ############# # X 값 Standardization X_mean = train_X.mean(axis=0) X_std = tr..

앞서 배웠던 것들로 학령인구와, 노령인구의 경향을 나타내주는 딥러닝 네트워크 회귀선을 만들어 보겠습니다. import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #X = school_age_population, Y = elderly_population X = [16.4, 14.7, 17.2, 16.6, 17.1, 20.3, 17.2, 15.6, 17.4, 18.7, 16.9, 17.1, 15.8, 19.3, 16.6, 15.1, 17.9] Y = [11.4, 13.2, 11.1, 17.6, 16.3, 9.2, 15.2, 18.4, 18.5, 11.6, 13.7, 9.7, 21.5, 12.0, 14.5, 15.8, 14.0] m..